
Márcio Barros, PPGI / UNIRIO – Research project supported by FAPERJ and CNPq

Evaluating Modularization Quality as an Extra Objective in Multiobjective Software Module Clustering

Evaluating Modularization Quality as an Extra Objective in Multiobjective Software Module Clustering

Contributions

The Pareto fronts generated by simulations without MQ are competitive with those generated by

simulations considering MQ as an extra objective.

Since adding an extra-objective to the search process conducted by a MO algorithm increases the

computer processing time required to execute the search, MQ might be suppressed.

Why is this relevant?

Praditwong et al. indicate that their MO software clustering approach can produce better solutions

than the existing single objective approach, though with a increased computational cost.

Context

The interest in multiobjective heuristic optimization is growing in the SBSE research community (2%

of the papers in 2005 versus 20% of the papers in 2010).

Despite the advantages of MO algorithms, their application to SE problems raises new research

questions, such as the number of objectives which should be explored by the search process.

Praditwong et al. observed that a search for solutions which maximize a given objective in the field

of software module clustering might be improved by searching for solutions which also maximize the

components of the desired objective. Similar results have been formerly observed in other research

areas using MO search algorithms.

In this research we have designed and executed a set of experimental studies addressing the

efficiency and effectiveness of adding an extra objective to a MO search process in the context of

software module clustering.

MO Software Module Clustering

Software module clustering addresses the distribution of modules representing the domain concepts 

and computational constructs composing a software system into larger, container-like structure.

Results

We executed a MO algorithm (NSGA-II) both with 3 objectives (cohesion, coupling, and difference)

and 4 objectives (the former plus MQ) and compared these pair wise results in a per instance basis.

We used a set of random instances to run the experiment for instances of varying size (number of

modules) and complexity (number of clusters). We have also used a set of real world instances.

Spread and HV quality indicators were used to compare the joint best fronts of both simulations.

The number of solutions and solutions in the joint best fronts were also counted.

We use a formulation based on structural, non-weighted 

dependencies among the software modules.

Coupling counts the number of inter-cluster edges. 

Cohesion counts the number of intra-cluster edges. 

Difference is the number of modules in the larger cluster 

minus the number of modules in the smaller one. 

MQ is calculated according to the Bunch approach. 

Number of clusters is fixed.

Given a set of modules, their dependencies, and the 

number of clusters, the MO search minimizes coupling 

(CP) and difference (DIF), while maximizing cohesion 

(CH) and MQ.

M6

M7

M8

M9
M10

M1

M2

M3

CP: 3; CH: 2; MF: 0.57

CP: 3; CH: 0; MF: 0
CP: 2; CH: 1; MF: 0.5

M4

M5

CP: 2; CH: 1; MF: 0.5

TOTALS: CP: 10; CH: 4; MQ: 1.57; DIF: 1

INSTANCE
Solution Count Best Solution Spread Hypervolume

W/out MQ With MQ W/out MQ With MQ W/out MQ With MQ W/out MQ With MQ

JAVACC (154M, 6C) 27.6 ± 7.3 28.1 ± 5.2 1.7 ± 4.6 0.2 ± 0.8 0.59 ± 0.11 0.62 ± 0.08 0.14 ± 0.08 0.09 ± 0.05

SERVLET (100M, 6C) 15.8 ± 6.9 11.0 ± 6.7 0.5 ± 2.2 0.7 ± 2.3 0.67 ± 0.14 0.76 ± 0.16 0.09 ± 0.09 0.04 ± 0.06

XML DOM (63M, 4C) 28.0 ± 4.9 28.0 ± 5.6 1.4 ± 4.4 0.6 ± 2.2 0.56 ± 0.08 0.58 ± 0.11 0.22 ± 0.10 0.16 ± 0.08

JUNIT (119M, 9C) 25.2 ± 8.8 19.6 ± 8.1 1.2 ± 4.7 0.8 ± 1.3 0.64 ± 0.13 0.70 ± 0.14 0.18 ± 0.12 0.16 ± 0.13

JMETAL (190M, 46C) 40.8 ± 9.4 44.8 ± 9.3 3.2 ± 5.1 0.4 ± 0.9 0.50 ± 0.09 0.52 ± 0.08 0.44 ± 0.08 0.41 ± 0.04

XML API (184M, 17C) 26.0 ± 3.4 31.1 ± 3.5 1.0 ± 2.8 0.8 ± 2.5 0.51 ± 0.10 0.50 ± 0.12 0.34 ± 0.09 0.32 ± 0.06

DOM4J (195M, 616) 37.2 ± 9.5 35.2 ± 9.3 2.0 ± 4.4 1.4 ± 3.6 0.58 ± 0.12 0.66 ± 0.11 0.44 ± 0.07 0.37 ± 0.09

POORMAN (304M, 15C) 26.8 ± 5.4 26.4 ± 8.3 1.6 ± 4.1 0.2 ± 0.6 0.81 ± 0.19 0.81 ± 0.18 0.54 ± 0.09 0.52 ± 0.07

LOG4J (308M, 20C) 30.9 ± 4.2 27.2 ± 3.4 0.8 ± 3.1 1.2 ± 3.0 0.54 ± 0.14 0.63 ± 0.11 0.43 ± 0.06 0.42 ± 0.07

SEEMP (31M, 9C) 7.7 ± 0.7 7.7 ± 0.7 4.0 ± 1.8 4.6 ± 1.1 0.44 ± 0.04 0.41 ± 0.06 0.34 ± 0.06 0.34 ± 0.05

INSTANCE W/out MQ With MQ Increase

JAVACC 16 54 338%

SERVLET 2 4 188%

XML DOM 29 98 338%

JUNIT 10 26 274%

JMETAL 2,603 27,822 1069%

XML API 219 1,243 568%

DOM4J 211 1,231 583%

POORMAN 374 2,263 605%

LOG4J 679 5,236 771%

SEEMP 16 24 150%

The table on the right shows that the time required to

account for MQ in a MO clustering search is significant.

Therefore, if the extra objective can be suppressed from

the search without significant loss, the computational

power required to run a MO software clustering will be

closer to the existing SO solution.

PPGI - UNIRIO


